Absztrakt
Cél: A kétrészes tanulmány szerzői egy újabban feltörekvő tudományterületet, az epigenetikát ismertetik publikált szakirodalmi adatok alapján, e második részben a forenzikus tudományok – a genetika és a daktiloszkópia – területén elért eredményekkel.
Módszertan: A tanulmány a bőrlécrendszer kialakulásának és a DNS-alapú biológiai életkorbecslésnek epigenetikai alapját szolgáló szakcikkek feldolgozását, azok szintézisét végzi el. Ismerteti továbbá az egypetéjű ikrekre vonatkozó kutatási eredményeket is.
Megállapítások: Meglepően keveset tudunk azokról a tényezőkről, amelyek befolyásolják a bőrfodorszálak által képzett rajzolatot, mintázatot. A rokon személyeknek több hasonló ujjlenyomata van, mint két nem rokon személynek, amely arra utal, hogy a bőrlécrendszer kialakulása genetikai szabályozás alatt áll, továbbá a fodorszálak méretét, alakját és távolságát is genetikai tényezők befolyásolják. A képződési folyamatban apró véletlenszerű események befolyásolják az egyes minúciák kialakulását, melyek tehát epigenetikai hatások. Minden külső és belső környezeti tényező kémiai módosításokat okozhat a génjeinkben és idővel be- vagy kikapcsolja őket. A DNS-metilációs mintázatok alapján meghatározható a biológiai életkor (epigenetikai-óra). Az, hogy epigenetikai szinten hány éves az illető nemcsak az egyén biológiai órájába nyújthat betekintést, hanem a jogalkalmazás során is fontos nyomozati adatokat szolgáltathat. Az életkor becslése a forenzikus tudományokban a biológiai profil rekonstrukciójának kritikus aspektusa. Az epigenetikai órák, amelyek az egyének öregedésével hipermetiláción vagy hipometiláción átmenő DNS-helyeket elemzik, az életkor legjobb prediktív modelljei.
Érték: A tanulmány átfogó képet nyújt az epigenetikai öröklődés molekuláris hátteréről a bőrlécrendszer kialakulása és a DNS életkorbecslése tekintetében publikált szakirodalmi tanulmányokon keresztül, továbbá használható javaslatokat kínál az epigenetikai óra lassítása érdekében.
Hivatkozások
Alberti, A., Traebert, J., Traebert, E., Nodari Junior, R. J., & Comim, C. M. (2021). Association between gestational period and obesity in children with the use of dermatoglyphic traits: A preliminary study. PLOS ONE, 16(9), e0257153. https://doi.org/10.1371/journal.pone.0257153
Aourangzaib, M., Chandra, M., Maham, R., Naz, A., Malathi, H., Qadeer, S., Mateen, R. M., & Parveen, R. (2024). Solving the twin paradox – Forensic strategies to identify the identical twins. Forensic Science International, 363, 112205. https://doi.org/10.1016/j.forsciint.2024.112205
Ashbaugh, D. R. (1999). Quantitative-qualitative friction ridge analysis. CRC Press.
Chaitanya, L., Breslin, K., Zuñiga, S., Wirken, L., Pośpiech, E., Kukla-Bartoszek, M., Sijen, T., Knijff, P., Liu, F., Branicki, W., Kayser, M., & Walsh, S. (2018). The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Science International: Genetics, 35, 123–135. https://doi.org/10.1016/j.fsigen.2018.04.004
Champod, C., Lennard, C. J., Margot, P., & Stoilovic, M. (2016). Fingerprints and other ridge skin impressions. CRC Press.
Dale, C. (2004). The practice of crime scene investigation. CRC Press.
Dias, H. C., Cunha, E., Real, F. C., & Manco, L. (2022). Challenges and (un)certainties for DNAm age estimation in future. Forensic Sciences, 2(3), 601–614. https://doi.org/10.3390/forensicsci2030044
Fiorito, G., McCrory, C., Robinson, O., Carmeli, C., Rosales, C. O., Zhang, Y., Colicino, E., Dugué, P. A., Artaud, F., McKay, G. J., Jeong, A., Mishra, P. P., Nøst, T. H., Krogh, V., Panico, S., Sacerdote, C., Tumino, R., Palli, D., Matullo, G., … Polidoro, S. (2019). Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi cohort analysis. Aging, 11(7), 2045–2070. https://doi.org/10.18632/aging.101900
Garzón-Alvarado, D. A., & Ramírez Martinez, A. M. (2011). A biochemical hypothesis on the formation of fingerprints using a Turing patterns approach. Theoretical Biology and Medical Modelling, 8, 24. https://doi.org/10.1186/1742-4682-8-24
Glover, J. D., Sudderick, Z. R., Shih, B. B., Batho-Samblas, C., Charlton, L., Krause, A. L., Anderson, C., Riddell, J., Balic, A., Li, J. X., Klika, V., Woolley, T. E., Gaffney, E. A., Corsinotti, A., Anderson, R. A., Johnston, L. J., Brown, S. J., Wang, S., Chen, Y. H., Crichton, M. L., & Headon, D. J. (2023). The developmental basis of fingerprint pattern formation and variation. Cell, 186(5), 940–956. https://doi.org/10.1016/j.cell.2023.01.015
Guardiola Ripoll, M., Sotero Moreno, A., Chaumette, B., Kebir, O., Hostalet, N., Almodóvar Payá, C., Moreira, M., Giralt López, M., Krebs, M. O., & Fatjó Vilas, M. (2024). Genetic and neurodevelopmental markers in schizophrenia spectrum disorders: Analysis of the combined role of the CNR1 gene and dermatoglyphics. Biomedicines, 12(10), 2270. https://doi.org/10.3390/biomedicines12102270
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J. B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., & Zhang, K. (2013). Genome wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49(2), 359–367. https://doi.org/10.1016/j.molcel.2012.10.016
Hawthorne, M. R. (2008). Fingerprint pattern types and associated terminology. In Fingerprints (pp. 27–54). CRC Press.
Hefetz, I., Pasternak, Z., Liptz, Y., & Bet Yosef, M. (2022). Preliminary investigation of the ability of fingerprint examiners in detection of sib sib relationships based upon finger and palm prints similarities. Forensic Science International, 337, 111381. https://doi.org/10.1016/j.forsciint.2022.111381
Ho, Y. Y. W., Evans, D. M., Montgomery, G. W., Henders, A. K., Kemp, J. P., Timpson, N. J., St Pourcain, B., Heath, A. C., Madden, P. A. F., Loesch, D. Z., McNevin, D., Daniel, R., Davey Smith, G., Martin, N. G., & Medland, S. E. (2016). Common genetic variants influence whorls in fingerprint patterns. Journal of Investigative Dermatology, 136(4), 859–862. https://doi.org/10.1016/j.jid.2015.10.062
Holt, S. B. (1968). The genetics of dermal ridges. Charles C Thomas.
Hong, S. R., Jung, S. E., Lee, E. H., Shin, K. J., Yang, W. I., & Lee, H. Y. (2017). DNA methylation based age prediction from saliva: High age predictability by combination of 7 CpG markers. Forensic Science International: Genetics, 29, 118–125. https://doi.org/10.1016/j.fsigen.2017.04.006
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14(10), R115. https://doi.org/10.1186/gb-2013-14-10-r115
Horvath, S., & Raj, K. (2018). DNA methylation based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics, 19(6), 371–384. https://doi.org/10.1038/s41576-018-0004-3
Horvath, S., Zhang, Y., Langfelder, P., Kahn, R. S., Boks, M. P. M., van Eijk, K., van den Berg, L. H., & Ophoff, R. A. (2012). Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biology, 13(10), R97. https://doi.org/10.1186/gb-2012-13-10-r97
Hwa, H. L., Lin, C. Y., Yu, Y. J., Linacre, A., & Lee, J. C. I. (2024). DNA identification of monozygotic twins. Forensic Science International: Genetics, 69, Article 102998. https://doi.org/10.1016/j.fsigen.2023.102998
Irmak, M. K. (2010). Multifunctional Merkel cells: Their roles in electromagnetic reception, finger print formation, Reiki, epigenetic inheritance and hair form. Medical Hypotheses, 75(2), 162–168. https://doi.org/10.1016/j.mehy.2010.02.011
Jin, X., Ren, Z., Zhang, H., Wang, Q., Liu, Y., Ji, J., & Huang, J. (2022). Systematic selection of age-associated mRNA markers and the development of predicted models for forensic age inference by three machine learning methods. Frontiers in Genetics, 13, Article 924408. https://doi.org/10.3389/fgene.2022.924408
Kattamreddy, A. R. (2023). Cracking the code: Can forensic genetics distinguish identical twins? A technical perspective. Sri Lanka Journal of Forensic Medicine, Science & Law, 14(2), 46–51. https://doi.org/10.4038/sljfmsl.v14i2.7938
Lee, H. Y., Jung, S. E., Lee, E. H., Yang, W. I., & Shin, K. J. (2016). DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Science International: Genetics, 24, 75–82. https://doi.org/10.1016/j.fsigen.2016.06.007
Li, J., Glover, J. D., Zhang, H., Peng, M., Tan, J., Mallick, C. B., Hou, D., Yang, Y., Wu, S., Liu, Y., Peng, Q., Zheng, S. C., Crosse, E. I., Medvinsky, A., Anderson, R. A., Brown, H., Yuan, Z., Zhou, S., Xu, Y., Kemp, J. P., … Wang, S. (2022). Limb development genes underlie variation in human fingerprint patterns. Cell, 185(1), 95–112.e18. https://doi.org/10.1016/j.cell.2021.12.008
López Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
López Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2023). Hallmarks of aging: An expanding universe. Cell, 186(2), 243–278. https://doi.org/10.1016/j.cell.2022.11.001
Lujan, S. A., Longley, M. J., Humble, M. H., Lavender, C. A., Burkholder, A., Blakely, E. L., Alston, C. L., Gorman, G. S., Turnbull, D. M., McFarland, R., Taylor, R. W., Kunkel, T. A., & Copeland, W. C. (2020). Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging. Genome Biology, 21, 248. https://doi.org/10.1186/s13059-020-02138-5
Mittelbrunn, M., & Kroemer, G. (2021). Hallmarks of T cell aging. Nature Immunology, 22(6), 687–698. https://doi.org/10.1038/s41590-021-00927-z
Naue, J., Hoefsloot, H. C. J., Kloosterman, A. D., & Verschure, P. J. (2018a). Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Science International: Genetics, 33, 17–23. https://doi.org/10.1016/j.fsigen.2017.11.004
Naue, J., Sänger, T., Hoefsloot, H. C. J., Lutz Bonengel, S., Kloosterman, A. D., & Verschure, P. J. (2018b). Proof of concept study of age dependent DNA methylation markers across different tissues by massive parallel sequencing. Forensic Science International: Genetics, 36, 152–159. https://doi.org/10.1016/j.fsigen.2018.07.007
O’Brien, G., & Murphy, K. (2020). Fingerprint patterns through genetics. Journal of Emerging Investigators, 2, Article 20 012. https://doi.org/10.59720/20-012
Petronis, A. (2006). Epigenetics and twins: Three variations on the theme. Trends in Genetics, 22(7), 347–350. https://doi.org/10.1016/j.tig.2006.04.010
Schneider, P. M., Prainsack, B., & Kayser, M. (2019). The use of forensic DNA phenotyping in predicting appearance and biogeographic ancestry. Deutsches Ärzteblatt International, 116(51–52), 873–880. https://doi.org/10.3238/arztebl.2019.0873
Srihari, S. N., Srinivasan, H., & Fang, G. (2008). Discriminability of fingerprints of twins. Journal of Forensic Identification, 58(1), 109–127.
Sturm, Á., Sharma, H., Bodnár, F., Aslam, M., Kovács, T., Németh, Á., Hotzi, B., Billes, V., Sigmond, T., Tátrai, K., Egyed, B., Téglás Huszár, B., Schlosser, G., Charmpilas, N., Ploumi, C., Perczel, A., Tavernarakis, N., & Vellai, T. (2023). N6 Methyladenine progressively accumulates in mitochondrial DNA during aging. International Journal of Molecular Sciences, 24(19), 14858. https://doi.org/10.3390/ijms241914858
Vaiserman, A., & Krasnienkov, D. (2021). Telomere length as a marker of biological age: State of the art, open issues, and future perspectives. Frontiers in Genetics, 11, Article 630186. https://doi.org/10.3389/fgene.2020.630186
Van Baak, T. E., Coarfa, C., Dugué, P.-A., Fiorito, G., Laritsky, E., Baker, M. S., Kessler, N. J., Dong, J., Duryea, J. D., Silver, M. J., Saffari, A., Prentice, A. M., Moore, S. E., Ghantous, A., Routledge, M. N., Gong, Y. Y., Herceg, Z., Vineis, P., Severi, G., … Waterland, R. A. (2018). Epigenetic supersimilarity of monozygotic twin pairs. Genome Biology, 19(1), 2. https://doi.org/10.1186/s13059-017-1374-0
van Dongen, J., Gordon, S. D., McRae, A. F., Odintsova, V. V., Mbarek, H., Breeze, C. E., Sugden, K., Lundgren, S., Castillo Fernandez, J. E., Hannon, E., Moffitt, T. E., Hagenbeek, F. A., van Beijsterveldt, C. E. M., Hottenga, J. J., Tsai, P. C., Min, J. L., Hemani, G., Ehli, E. A., Paul, F., … Boomsma, D. I. (2021). Identical twins carry a persistent epigenetic signature of early genome programming. Nature Communications, 12(1), 5618. https://doi.org/10.1038/s41467-021-25583-7
Vidaki, A., & Kayser, M. (2017). From forensic epigenetics to forensic epigenomics: Broadening DNA investigative intelligence. Genome Biology, 18, Article 238. https://doi.org/10.1186/s13059-017-1373-1
Vidaki, A., Ballard, D., Aliferi, A., Miller, T. H., Barron, L. P., & Syndercombe Court, D. (2017a). DNA methylation-based forensic age prediction using artificial neural networks and next generation sequencing. Forensic Science International: Genetics, 28, 225–236. https://doi.org/10.1016/j.fsigen.2017.02.009
Vidaki, A., Díez López, C., Carnero Montoro, E., Ralf, A., Ward, K., Spector, T., Bell, J. T., & Kayser, M. (2017b). Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Science International: Genetics, 31, 67–80. https://doi.org/10.1016/j.fsigen.2017.07.014
Vidaki, A., Giangasparo, F., & Syndercombe Court, D. (2016). Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing. Electrophoresis, 37(21), 2767–2779. https://doi.org/10.1002/elps.201600261
Vidaki, A., Kalamara, V., Carnero Montoro, E., Spector, T. D., Bell, J. T., & Kayser, M. (2018). Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting. Genes, 9(5), Article 252. https://doi.org/10.3390/genes9050252
Walsh, S., Pośpiech, E., & Branicki, W. (2016). Hot on the trail of genes that shape our fingerprints. Journal of Investigative Dermatology, 136(4), 740–742. https://doi.org/10.1016/j.jid.2015.12.044
Weidner, C. I., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., Bauerschlag, D. O., Jöckel, K. H., Erbel, R., Mühleisen, T. W., Zenke, M., Brümmendorf, T. H., & Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biology, 15(2), R24. https://doi.org/10.1186/gb-2014-15-2-r24
Xiang, Z., Yang, Y., Chang, C., & Lu, Q. (2017). The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. Journal of Autoimmunity, 83, 43–50. https://doi.org/10.1016/j.jaut.2017.04.003
Yet, I., Tsai, P. C., Castillo Fernandez, J. E., Carnero Montoro, E., & Bell, J. T. (2016). Genetic and environmental impacts on DNA methylation levels in twins. Epigenomics, 8(1), 105–117. https://doi.org/10.2217/epi.15.90
Zapico, S. C., & Ubelaker, D. H. (2022). Application of aspartic acid racemization for age estimation in a Spanish sample. Biology (Basel), 11(6), Article 856. https://doi.org/10.3390/biology11060856
Zbiec Piekarska, R., Spólnicka, M., Kupiec, T., Parys Proszek, A., Makowska, Ż., Pałeczka, A., Kucharczyk, K., Płoski, R., & Branicki, W. (2015). Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Science International: Genetics, 17, 173–179. https://doi.org/10.1016/j.fsigen.2015.05.001
Zgutka, K., Tkacz, M., Tomasiak, P., & Tarnowski, M. (2023). A role for advanced glycation end products in molecular ageing. International Journal of Molecular Sciences, 24(12), Article 9881. https://doi.org/10.3390/ijms24129881

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2025 Belügyi Szemle